
Ruthie!
A Non-Verbal Game for Children Who Can't (Yet) Read

Table of Contents
Introduction
Global Declarations (RUTHIE.BAS)
Opening Form (OPENINGF.FRM)
About Ruthie... (OPEN2.FRM)
Game 1 (RUTHIE.FRM)
Game 2 (GAME2.FRM)
Game 3 (GAME3.FRM)
Useful Things I Learned Along the Way
Improvements I'd Like to Make

Introduction
Ruthie Shipps is a little girl in suburban Washington, D.C. She's my
niece, and she's brain-damaged. She has a "language processing deficit."
A good analogy for a child with a language processing deficit is being a
GW-BASIC interpreter trying to deal with QB (or VB) code. You can
understand little bits of what's going on, but only if it's given to you
in exactly the form you understand, with no special inflection or
emphasis. If Ruthie understands "Sit down, Ruthie!" she won't necessary
understand "Ruthie, sit down."

One afternoon Ruthie was at my mother's house, and discovered my
mother's computer. Somehow or other she ended up with Windows Paint on
the screen, and she was entranced. She spent hours in front of the
screen, sweeping swashes of color across the picture area and giggling
with delight. My mother called me with the news, and asked if I could
find a game that would help Ruthie learn to use the mouse. Ideally the
game would have these attributes:

* It would be completely non-verbal--Ruthie would be able to launch
the game from the Program Manager, play the game, and quit without
having to recognize letters or words.

* It would be able to run Maximized, so Ruthie couldn't accidentally
move, resize, or launch other applications once her game was
started.

* It would involve simple mouse skills. As Ruthie got better,
perhaps the game controls would get smaller, and perhaps she could
learn to drag controls around.

I'd just ordered Visual Basic, and thought this would be an excellent
opportunity to do a little programming with my new toy...er, investment.
Working from the general outlines my mother had dreamed up, I set to

Ruthie!
work.

I initially figured this would be a one-form project, so I named the
first game Ruthie.Frm. If you look at the Maintenance History in the
RUTHIE.BAS file you'll see that this project went through quite a bit of
development before I was ready to upload it to CompuServe. I've
subsequently added two more games, and have met my mother's design
criteria. Along the way I've added a few touches--but I'll explain that
below.

People of all ages respond to success. When I worked for a computer
software company I developed a training program for new users. Each
session always ended with a "success point"--some activity or
achievement that would let the trainees go to lunch or to the hotel
satisfied that they had accomplished something good. It's particularly
important to let children know that they've succeeded--attention spans
are very short, and they'll lose interest quickly if they can't make the
object (book, game, toy, computer game) do something Right Now. My
company develops books for Highlights for Children, the largest
children's magazine on the planet. "Celebrate your child's successes!"
was a key theme of the Highlights founders, and it's a phrase you'll
hear from the magazine's editor today. It's an important point.

I bring up success because when the child successfully achieves the
desired task (clicking on the red square, or something else) the program
displays a big picture with a "success message." If you play the game
with a child, PLEASE exclaim the phrase on the picture. Don't just read
it--SHOUT IT! "Hooray!" "Good Job!" "Yippee!" A child who can't read
won't necessarily learn to read when she sees the words--but she'll know
that you're very proud of her. And that will make the biggest difference
in how your child does in her career in school.

This document serves several purposes: First, it simply documents the
code--undocumented applications are worthless the week after they're
written; Second, it gives you a glimpse of what I set out to do, and how
I accomplished it; Third, it can serve as a model for documentation for
the VBCT project--the CompuServe access project that's being developed
in Visual Basic in Section 9 of the MSLANG forum.

This introduction gives you the overview--the idea, the goals, the
sweeping generalizations. In the pages that follow we'll work through
each of the forms, and each of the event procedures. The emphasis is on
what's happening, and why. Novice users will find a neat trick or two
(plagiarized wholesale from some of the gurus on MSLANG); experienced
users will be able to see quickly that I have much to learn about
programing.

Several key elements in RUTHIE were contributed by members of the MSLANG
forum on CompuServe. Keith Funk responded to a plea for help with a lot
__

2

Ruthie!
of helpful code, and I learned a clever way to shuffle the elements of
the control array in GAME3.FRM from somebody else--but I deleted the
message before I jotted down his name. You should assume that all
flashes of brilliance come from the MSLANG gurus. The booboos, bumbling,
and blunders are mine, all mine.

Finally, this isn't commercial software. This isn't going to turn up in
the Games section of Windows 3.1, or in the next edition of Microsoft's
Entertainment Pack. I wrote it as a learning experience, and to
entertain (and encourage) a little five-year-old girl. If you learn
something from it, I'd appreciate hearing from you--it's nice to know.
If you find the code so poor that it's funny, at least let me know that
you had a good time. And if you have a four-year-old handy, and play the
game, please consider sending $5 to Ruthie's school. The address is
shown on FORM2.FRM (About Ruthie). We've started a fund to buy books for
their library. If you send them a contribution (which is tax-deductible,
by the way) they'll be able to buy more books for handicapped children.
Being in the publishing business, I'm all for libraries buying more
books <grin!>.

Have fun!

John Murdoch, Wind Gap, Pennsylvania, July 1991
CompuServe 71507,1212

__
3

Ruthie!

Global Declarations (RUTHIE.BAS)
It's important to keep track of the history of an application. The
Maintenance History form is a good way to keep track of what has
happened when, and who did it. In this instance the "who" is a little
pointless--I'm the only programmer at Murdoch Books. But it's the style
we used when I worked for a software company, and old habits die hard.

There aren't many global constants to keep track of. The Boolean
constants help make things a little more readable. The HEADER constant
lets me make a quick change if Bill Gates calls up wanting to license
the game for Windows 3.1 <dream on>. HOWLONG defines a global constant
for "how long" the sucess messages and sad faces are displayed.

OPENINGF.FRM (The Opening Form)
The opening form simply tells the user what the game does, and provides
the usual information. There are two little twists:

* The picture in the upper left corner is a "version icon." During
the initial schmoozing stage of the VBCT project we discussed
using different pictures to identify specific versions of the
finished product. The most seasoned heads seemed to poohpooh the
idea. But I like it, and this application needs to be non-verbal.

* The second trick (which is repeated through the application) is
that clicking on the picture has the same effect as clicking on
the "Start" button. The child simply has to learn that clicking on
the little picture--any little picture--will bring a game up.

And by the way, the little copyright symbol--"©"--is ANSI character 169.
You can enter it on your next app (and you should) by holding down the
ALT key and typing "0169" on the numeric keypad on your computer.

About Ruthie... (OPEN2.FRM)
The form is always loaded as Modal--meaning that so long as you see it,
you can't access any other RUTHIE form. You'll also note that the
Minimize and Maximize buttons have been removed. Clicking on the
Continue button (or on the photo) will hide the form, and return you to
wherever you called this from. (The form can be called from the Opening
Form, or from any of the games.)

The picture is a BMP. It began as a TIFF file in Astral Picture
Publisher. It was output as a PCX file and imported into Windows Paint.
From there it was saved as a BMP file. Along the way it grew from a 4K
TIFF into a 93K BMP. Yup--93K of RAM for that tiny little picture.
__

4

Ruthie!

Mark Novisoff (of MicroHelp, a leading vendor of Basic add-on tools)
mentioned that BMP files compress quite well with PKZIP. Even so, I'd
think twice about using photos in VB apps--at least until Microsoft is
able to directly support TIFF files.

Game 1 (RUTHIE.FRM)
When the game is loaded, the Form_Load event calls a subroutine named
Initialize. Initialize defines a custom scale for the form, and places
each of the visible elements.

Why go to the hassle, instead of simply defining their properties at
design time? Several reasons. First, different users have different
monitor sizes. What works on my monitor (a NEC 4D) won't necessarily
work on my mother's 14" Super VGA, and won't begin to fit on my wife's
12" EGA monitor. So the Form_Load procedure defines the form size (in
terms of the screen dimensions) and then tells Initialize to set up the
visible form.

If you're using pictures on your form--especially if you're using big
pictures, as I am--you may initially find yourself moving controls
around trying to find the little jasper you want that's invariably down
at the bottom of the heap. If you have the app size and position all the
controls at runtime, you can shrink your pictures to a manageable size
and store 'em off to the side, out of the way.

Actions:
The "actions" (Stop, GoToGame2) are stored on a picture box to make the
initial screen setup easier. Because they're icons they never change in
size--it's easier to put them both on a little "tray" and move that--
it's one set of code instead of two (or three in Game2).

Background:
In Game 1 and 2 it's called Background. In Game 3 it's the Success
Picture. When the user successfully clicks on the red square (Picture 1)
she sees the Background displayed.

The "success picture" for each game is identical to it's version icon.
When the version changes, the success picture will change as well.

Menus:
"If this is a non-verbal app, why do you have menus?" For the parents.
If a child wants to play Game 3, it's a drag to go to Game 2, and then
to Game 3. The menus let you move a little more quickly. Using menus
also lets me give the user access to instructions (another help for
parents) and to the About Ruthie... form. Further, Windows users expect
FileExit--novice users (like my mother) get lost if they can't find it.
The Stop icon isn't Windows-standard, and Control Close is a kludgy way
__

5

Ruthie!
to quit.

Game Menu:
Call me flippant. Rather than just ignoring the user who clicks on Game
1, we give him a little smart-aleck comment. A little something for
parents who take a peek at Junior's game late at night.

GoToGame2 and GameGame2, GameGame3:
These controls just hide this form, and load the next one. Yes, they're
redundant. Should I "simplify" the code by having GoToGame2 call the
GameGame2_Click event procedure? In theory, yes. But in practice doing
so doesn't really save anything--both instructions are one line, and
doing it directly saves a subroutine call. In addition it's easier for
you to understand what I'm doing--you don't have to shuffle off to
another subroutine to find out. If it's a big hunk of code (Initialize)
then I'll call the sub. But for a one-liner, I'd rather do it directly.

InstructionsGame1 (INSTGAME1.FRM):
The form shows as modal. When it is unloaded (by clicking on Continue,
or on the picture) it hides the form. Why not Unload the form instead? I
could, I suppose. But leaving it up makes it quicker to refer back to
it, and I don't think freeing up system resources is a big deal with
this app. Nobody's going to be recalculating an Excel worksheet in the
background while they let Junior play Ruthie (if someone does, he gets
what he deserves!).

Live Area:
Game 1 and Game 2 have a "Live Area". The Live Area defines all the
places the target picture (Picture1) can move to. Using a Live Area
prevents the possibility of having the picture randomly move over the
top of something like the Stop icon. We want the Live Area to be
transparent to the user--clicking on the Live Area gets you exactly the
same result as clicking on the Background.

Picture1:
The red square. Picture1 is "contained" in the Live Area. When it is
clicked the Background is turned on. Then we want to determine the
available space within the Live Area, and have the picture randomly move
there.

* The Visual Basic Programmer's Reference doesn't do a very good job
of explaining Scale, ScaleWidth, and Width, and the differences
between them. It's very important to know if you're going to be
placing (and expecially moving) controls around. See the "Useful
Things I Learned Along the Way" section below for more.

* You may have noticed, earlier, that the last line in the
Initialize subroutine was "Randomize". If you ask VB for a random
number, you'll get one. If you ask for a series of them, you'll
get a series. If you then ask for a random number the next time

__
6

Ruthie!
you load the app, you'll get exactly the same series. For my
purposes this was not a feature. "Randomize" recreates the random
number series every time the form loads (or is resized)--so the
picture will always move in a different pattern. (Kids with video
game experience are amazingly quick at picking up recurring
"random" patterns--it's the key to success for most video games.)

Timers:
The Timers turn off either the background or the sad face. A nagging
little problem I discovered early on was that when I moved Picture1 so
that half of it was visible underneath the Background, part of it would
not redraw when Timer1 turned Background.Visible = FALSE. That's why I
executed Picture1.Refresh at the end of Timer1.

The Visual Basic Programmer's Reference describes this sort of problem
on page 176, in the context of persistent graphics and the AutoRedraw
property. The manual points out that the AutoRedraw property costs
memory (they give a pretty big hint that you shouldn't use it unless
absolutely necessary--they clearly think that a little extra work for
the processor is better than using a little more memory). The manual
suggests using the Paint event to trigger a Refresh or some similar
action (they're talking about drawn graphics). I'm just adding it to the
Timer, rather than adding another event procedure.

Game 2 (GAME2.FRM)
As with Game 1, the Form_Load procedure defines the form area, and calls
the Initialize subroutine to set the scale and place the controls on the
form.

Note: the Initialize routine for Games 1 through 3 are not
the same. Also, for some dumb reason, I called the Game 3
procedure InitGame3. I suppose I should have called them
InitGame1, InitGame2, etc. A journeyman programmer will tell
you that there's a lot of wisdom in defining your variable
names, styles, and subroutine names in advance. I winged it,
and it shows.

As I mentioned above, I'm placing all the controls in the code so that
the form can be resized. Game 2 is the most "stretchy" of all three. If
you resize the game, everything, including the "thermometer" changes.
Try it! But there's a cost to this technique--try changing the
proportions of the game. Make it as wide as your monitor, and half the
height. Now zip through eight successful hits on the target picture, and
view the success message. Looks like something from one of those
distorted sideshow mirrors, doesn't it? For this application I don't
mind--but it's something you should be aware of.

__
7

Ruthie!
Let's discuss the idea of custom scales for a minute. Note that in Game
1 I used a custom scale of (75, 100); in Game 2 I'm using a scale of
(75, 50). (You'll recall that the first element in the scale is the x-
scale, the second element is the y-scale.) In both games (and in Game 3)
I want the scale units to be roughly equivalent, so that a 10 by 10 box
is a square. The Programmer's Reference gives you an example of a custom
scale that's (100, 100). That's nice if you have a square form, but. Use
a custom scale to make a clear break in your mind from your monitor--the
user's monitor won't be the same. If you use twips or pixels for form
placement, you're just looking to irritate the user (we'll use twips
later on--stay tuned).

Initialize:
The Initialize routine is similar in purpose to Ruthie_Initialize, so I
won't go over everything here. I do just want to mention that I force a
Refresh of all the controls down at the bottom of the routine. I call
Initialize when the form is loaded, and when it is resized. I found in
testing that if I resized the form by pulling on a side or corner
border, the controls moved around and redrew without a problem. But if I
maximized the form, some of the controls (in a seemingly random fashion)
looked funky. A bug? Maybe. But this cures the problem.

Background:
As with the other games, clicking on the Background (the live area) or
the form gets a Sad Face. Note that I called it a Frown Face here--see
my note above about the perils of winging one's variable-naming
conventions.

Form:
The Load procedure defines the startup screen size and shape, and calls
Initialize. Why didn't I include the Picture1.Picture assignment in
Initialize? Because I wanted the current picture to remain the same in
the event of a Resize. I may at some point in the future include a
random selection of pictures--we'll see.

The Form_Resize event
Here is where using twips for the scale makes a difference. Game2 drove
me nuts trying to deal with the problem of resizing the form, when your
"resizing" action was to minimize the form. I kept getting an error
message at compile time, for stack overflow. Apparently I was making an
invalid assignment, but I'm not sure what's going on. (This is something
I'm still trying to pin down. For now I've eliminated minimize buttons
from all the Ruthie forms.)

Menu Commands:
These are essentially the same as the menu commands for Game 1. Note
that we give a slightly different smart-aleck message if the user tries
to "go to" Game 2. Think of it as "context-sensitive flippancy." No
extra charge.

__
8

Ruthie!
Picture1:
If Picture1 is successfully clicked, we want the "mercury" in the
thermometer to increase. In actual fact the thermometer is Picture2, and
the mercury is Picture3. Picture3 is contained by Picture2.

First off, we define the increment by which the mercury increases as
one-eighth the height of Picture2. We increase the height of Picture3
that amount, and then move Picture3 up. (If we reversed the order, the
mercury would look weird--it would move up, and fill in below. If you
increase something so that it projects out of its container nothing
happens--you just can't see it. In this case that's a good thing.)

If the new Picture3.Height is almost equal to the height of Picture2,
then we're ready to show the sucess message and move the control. "But
why," you ask, "are you asking if Picture3 is almost the height of
Picture2? Shouldn't it be exact?" There's a small rounding error when we
divide the size of Picture2. I might be able to solve it with integer
division ("\" instead of "/") and some clever code to round up (100 \ 8
would equal 12, for instance), but this seemed more direct.

Once the success message comes on, we move to the next picture. In this
game we don't randomly pick a new picture--instead we just rotate
through the four possibilities. Here's how:

Counter = (Counter + 1) Mod 4 'Rotates the counter

This is a one line way of saying:

Counter = Counter + 1
If Counter >= 4 Then

Counter = 0
Else
End If

It's a little less obvious, but it takes less time. Work it through in
your mind, and you'll see that it works:

If Counter = 0, the new Counter is 1;
If Counter = 1, the new Counter is 2;
If Counter = 2, the new Counter is 3;
If Counter = 3, the new Counter (4 mod 4) is 0.

It's nice to call this "elegant" programming. Just be careful that your
programs aren't so "elegant" as to be unreadable.

Once the picture has been changed we reset the thermometer to its
original size and set the timer.

Timers:
__

9

Ruthie!
Timer1 turns off the "FrownFace" after an interval of HOWLONG--Timer2
turns off the success picture after HOWLONG. I could write this more
efficiently with one Timer:

Sub Timer1_Timer()
FrownFace.Visible = FALSE
Yippee.Visible = FALSE

End Sub

There's little extra work for the program to turn off a picture that's
already off....

Game 3 (GAME3.FRM)
The Game:
This game is significantly more complicated that Game 1 or Game 2.
Instead of just finding the target and clicking on it, the user has to
find a picture, find it's matching pair, and drag the "source" picture
over the "target" picture. To further complicate things, the pictures
are icons--they're not Window Metafiles (which most of the other
pictures are). (We'll discuss why these pictures are icons in "Little
Things I Learned..." below.) Consequently these pictures are smaller.
The user's parent should plan on doing a little coaching with this game.
The opportunities for failure are greater.

When the user clicks down on the source picture, the DragIcon property
shows a similar icon--but not the identical one. In testing so far, no
child has been confused by this--they've all understood which picture in
the target array they were looking for. It's a little feature--that
something extra that adds a little pizzazz.

If the user drops the icon too soon, or on the wrong picture, a SadFace
appears. If the user clicks on the form, but not on the source picture,
the sad face appears. I considered using different sad faces to trap for
different events (a control array named SadFace(), coupled with a
matching subroutine called SadFaceVisible--each different event would
just pass a value for the index). I chose to hold off on the idea for
now--I'd decided to upload this to CompuServe, and I was getting wary of
making the ZIP file too big for many folks' download budgets.

InitGame3:
We begin by declaring an array into which we'll assign the numbers 0 to
5. Then we'll pick two random numbers from 0 to 6, and swap the values
in those array positions. An example:

When we begin, the array looks like this:

___ __
__

10

Ruthie!

| 1 | 2 | 3 | 4 | 5 | 6 |
We'll randomly select two array positions, say 2 and 5, and swap
their contents. Now the array looks like this:

___ __
| 1 | 5 | 3 | 4 | 2 | 6 |

Now let's suppose that the next pair to be swapped is pairs 1 and
2. When that's done, the array will look like this:

___ __
| 5 | 1 | 3 | 4 | 2 | 6 |
Do that 28 more times, and you've got a pretty thoroughly shuffled
array.

Once we've shuffled the array, we'll use that array to assign pictures to the
Target() picture array.

Note: My Storage() array has 12 pictures, not 6. That's why
the assignment multiplies the array number by 2. The
Storage() array is sorted with the DragIcon immediately
following a given picture.

Now that we've loaded the Target() array, we need to identify the
SourcePicture--we do that by randomly selecting one of the Storage()
pictures. We then define the DragIcon as whatever the following picture
is.

The rest of InitGame3 simply defines the location and placement of the
elements on the screen. Note that I didn't call the game background
Background this time (another example of poor planning)--I called it
Picture1. This is particularly dangerous because Picture1 in Games 1 and
2 is an entirely different control, akin to SourcePicture in this game.

Form:
You may recall that earlier I preached on the virtues of custom scales, as

opposed to using twips. (I don't think the Microsoft documentation
people ever grasped Scale--the Programmer's Reference clearly steers you
away from custom scales in favor of staying with twips. They don't even
give you any examples of why you'd want to use them.) Here's where twips
come to the fore.

You will probably remember that icons are a fixed size--if you've played with
IconWorks, IconDraw, IconMagic, or any of the other
shareware/freeware/bundleware icon makers, you'll have realized that
nobody's ever given you the option to resize the puppy. If you resize an
app that's chock full of metafiles, the metafiles just get squeezed or
__

11

Ruthie!
stretched. If you resize an app with a lot of icons, some of those icons
might just disappear. This game would be a little tough for a five-year-
old to play if the Target() array wasn't visible, so I used the
Form_Load and Form_Resize procedures to make sure nobody made the form
too small.

In the Form_Resize procedure I test to see if the size has been reduced either
vertically or horizontally. Depending on what happens (and it will catch
both circumstances if the user has used a corner border to shrink the
form) the user will have a message pop up correcting him, and resetting
the app size.

SourcePicture:
The SourcePicture.DragMode property is set to Manual. I could have set it to

automatic, but then I can't take advantage of MouseDown events. At
present I don't--but in the future I'd like to add VBTools's nifty music
functions to play a little "ta dah!" jingle when the picture is clicked
on (I'll include a Preferences dialog box so parents can choose to turn
the sound off<!>).

When the MouseUp event occurs dragging stops (that is, we "drop" the
SourcePicture.DragIcon). I don't move the control's final position--I
just want the user to drag it over the correct control, or start over.

Timers:
Only Timer1 is used at present. I originally used two timers, but found that

(as I described at the end of Game 2) I could use one timer to achieve
both results. I haven't killed off Timer2 yet, and I won't until I'm
sure that I'm not calling it from someplace else.

Useful Things I Learned Along the Way
Consistency and Planning:
One of the beauties of Visual Basic is the way that it implements the Windows

form. The "form" is in one window, while the code for the form is in
another. You can do lots of interesting and creative things.

Traditional "structured" programming doesn't work that way. A well-written
program starts at the top and works its way down through the code.
Numerous GOTO loops will cause journeyman programmers to snicker at
you--if you really use too many, they refer to your work as "spaghetti
code." (Back when I worked for a software company--I was primarily a
management consultant, but tried to do a little coding now and again to
be helpful--I got a real friendly invitation from the programming staff
the next time I was visiting the home office. We all hiked a few blocks
from the office to a trendy new nouveau-Italian place, where the Chief
Programmer ordered an extra-large plate of spaghetti for me. The
restarant used paper tablecloths, so the programmers all pulled out
crayons and diagrammed my latest programming effort in about a dozen
__

12

Ruthie!
colors...)

If poor programming in a structured environment produces spaghetti, poor
programming in a Visual environment will produce lasagna. You can
quickly prototype an application. But if you aren't careful, you'll kick
yourself every time you go back into your code, as you deal with poorly
named variables, inconsistencies between forms, etc.

The Databus programming language (a minicomputer language from long ago)
requires you to declare all your variables at the beginning of the
program. It's a good practice. In Visual Basic, where you have different
code for different forms, I'd strongly suggest using the (general
declarations) section to declare variables. I haven't done it--yet--but
getting the variable and subroutine names straight in this app will be
the next project.

Documenting a Project:
As I wrote above, a project that hasn't been documented is worthless the week

after it has been written. You don't need to be quite as chatty as I've
been here. But, if you're creating an application for a client, and you
won't necessarily be there when the app is updated, you should be as
exhaustive as you can be. A lot of "propeller-heads" don't like to
write, so they find documenting code to be a real drag. But a lot of
those programming wizards are also extraordinarily good teachers. If you
just write out what you'd say to a novice programmer, you'll produce the
best possible documentation your program could ever have.

You should produce a document much like this one: why the app was written,
what it does, how it does it. You should also include lots of comments
within the body of your code. The "thousand points of light" style of
Visual Basic can make keeping track of programs pretty tough. If you're
calling the same subroutines from different places, be sure to indicate
in the subroutine code all the names of the calling routines. If you
don't, you'll eventually cripple your application by "cleaning out" a
chunk of code that you need to trap for a non-standard 9600 bpi modem,
or somesuch.

Let me also give you a plug for providing a Windows Help file. You have to
call Microsoft to get the Help compiler for VB, and it helps a bunch if
you use Word for Windows. I haven't yet popped for the compiler (I want
to really get some use from VB before I go spend another fifty bucks on
another piece of software), but I will soon. Windows users expect Help
files. A big part of making an environment like Windows work is playing
by the rules, and that means providing Help files.

Pictures and Icons:
This application won't log you on to CompuServe. It will not sort a 10,000

record customer file. But it does do quite a bit with moving and
resizing controls, and it uses a lot of pictures.

Moving, Sizing, and Resizing:
__

13

Ruthie!
If you've used computers for more than a year, chances are that
you've used more than one computer. I used to work for a
publishing company that had three PC-XT clones, an AT clone, a
genuine IBM PC AT (with a 6 Mhz clock speed--golly!), and a
Macintosh Plus. All in all, we had five different keyboards and
six different monitors. So what? So assume that your application
will be run on a different size monitor that what you're using.

When you write your application, you will have to keep track of
three different kinds of measurements (I'll just talk about
height--the same will be true for Width as well): Screen.Height,
Height, and ScaleHeight.

Screen.Height is obvious. It's the height of the screen. But the
trick is that you never know what that actual screen height will
be. So you will always have to define form sizes in terms of
percentages of the Screen.Height. Many applications simply center
the form on the monitor:

Top = (Screen.Height - Height) / 2
Left = (Screen.Width - Width) / 2

Include this in the Form_Load event and the form will be centered.
If you want to get a little fancier, move the form a little to one
side or another:

Top = (Screen.Height - Height) * .4
Left = (Screen.Width - Width) * .6

That will make the form set a little higher on the monitor, and a
little closer to the right-hand side.

If you want to move an object, you'll have to define it's Left and
Top positions (X and Y). You can define X and Y in a variety of
ways. In Ruthie I defined them by random movements (see Game 1 and
2). You could also define X and Y with the CurrentX and CurrentY
positions returned by a MouseUp event (where something was
dropped). One thing I'm trying is adding a little animation to the
process. I'm fooling around with a little "counter motion" when I
move a control: If I'm moving it two inches to the left, I'll
first move it 2/10ths of an inch to the right, and then zip to the
left. I'm still working on getting the effect to work reliably
with a random-motion game, but it's really slick when it works
right.

How about moving controls? If you let the user drag a control (a
picture box, for instance) all that shows when he drags is the
outline of the control. Yuck. That's why Game 3 uses icons instead
of metafile pictures. If I used metafiles I wouldn't be able to
use the nifty little DragIcons. Keith Funk spent a lot of time

__
14

Ruthie!
trying to move picture controls manually, redrawing the object
when the MouseMove event took place (see page 200 of the
Programmer's Reference). He wasn't satisfied with the results, and
I didn't see how I could improve matters. I gave up on picture
controls and used icons instead.

BMPs vs. WMFs:
Don't use BMPs in your applications. The little picture of Ruthie
Shipps on the "About Ruthie" screen requires 93K of RAM. That's a
little less than a third of the entire .EXE file. That 93K picture
began life as a 4K TIFF file, and it was a lot nicer image to
boot....

You'll see the same problem with any type of bitmap file. Visual
Basic won't support EPS files, but it will support Windows
Metafiles. I drew the WMFs in Ruthie with Corel Draw, and imported
them. It's quite simple, and they don't take up much in memory.

Randomize and Random Series:
As I mentioned above, Visual Basic gives you random numbers in a sequence.

You'll continue to get the same sequence every time you run the routine
where you ask for random numbers--VB uses the same number to "seed" the
random number generator each time.

This can be a good thing in some circumstances. In my circumstances I only
needed the appearance of random motion--reseeding the random number
generator every time I loaded or resized the form was fine. But if
you're doing something that requires a truly random number each time,
remember to use the Randomize instruction before you ask for a Rnd.

Scale and Dimensions:
The manual tells you that the ScaleHeight depends on the Scale of the
"container" that holds a control. It then describes a few ways to set
the Scale, but doesn't give you any sense of how ScaleHeight and Height
relate. First off, remember that you can use a variety of different
measurement scales in an application. I work in publishing, so I'm quite
content to work with points. A twip is 1/20th of a point, so twips are
nice as well. However, you already know my thoughts on the value of
custom scales. In addition I might want to use inches or centimeters,
especially if I'm going to be printing out a report. Suppose you're the
computer--we tell you that the Height of the form is 3, but the height
of the command button is 425. Which is bigger? The form I'm thinking of
is 3" high, with a thin little command button on it that is a mere 3/10"
high. There has to be a way to relate one control to another, even if
they're using different scales. Enter ScaleHeight. Every control is
contained by something else. In Game 3, for instance, the six pictures
in the Target() array are contained in another picture box named
Targets; That in turn is contained on the Game3.Frm form. If you want to
relate a control and it's container, you always think in terms of the
__

15

Ruthie!
Height of the control, and the ScaleHeight of the container. If you're
resizing Picture1 in Game 2, for instance, you would tell the computer

Picture1.Height = LiveArea.ScaleHeight * .15
Picture1.Width = LiveArea.ScaleWidth * .15

LiveArea is the container, Picture1 is the control being resized. If you
then wanted to resize LiveArea, you'd treat it as the control being
monkeyed with, and Game2.Frm as the container:

LiveArea.Height = Game2.ScaleHeight * .75
LiveArea.Width = Game2.ScaleWidth * .75

User Interface Considerations:
The first version of this game was polished up, copied onto a floppy disk, and

sent off to my mother. She called up to report that it "didn't work
right." Why? Mother has a CompuAdd HiRez 14" monitor, with 800 by 600
resolution. I designed the application to look splendid on a NEC 4D, a
16" monitor with 1024 by 768 resolution. All the measurements were
different on her monitor.

If you design screens in any character-based environment, you're pretty much
dealing with an 80-column, 25-row format. If one user uses 8514/A and
another CGA, so what? It's all text. But with Windows and graphical
programming, it's a little bit more complicated.

The most important thing I learned was to assume the user has a different
monitor than I do. That pretty quickly leads you into using custom
scales, and placing and sizing your controls at run time.

That's a drag.

No it's not. Because there's one big, glaring, stupendous flaw in Visual
Basic: There's no way to document control properties. Sooner or later
somebody will come up with an add-on that will cycle through all the
properties in your application (using the TabOrder, for instance) and
printing all the properties. Till then, (and even then) placing and
sizing the controls at runtime makes it much simpler to document how and
where the controls are used.

Improvements I'd Like to Make:
Right off the bat, I want to add sound. Instead of showing fireworks in the

success picture in Game 3, I want to make fireworks sounds. Children,
especially non-verbal children, react to sound. (Some would argue that
games with sound--Nintendo, for instance--help many children become non-
verbal.) I'd like to play simple jingles with successes, a little "uh
oh" tune when a Sad Face appears, things like that.

I'd also like to incorporate some animation features when I move controls. I'd
__

16

Ruthie!
like to give a little "counter motion" before I moved a picture, or
perhaps have the picture "bounce" off the borders of the frame like a
pool ball before coming to rest in its final location. Steve Gibson, in
his InfoWorld column on Visual Basic, wrote an app that made the control
bounce off the far side of a form before it settled into place. I'd like
to explore that.

I also want to add a couple of other games. I'd like to add a second "level"
to Game 3, where after a certain number of successes the Target()
pictures move randomly about the LiveArea. (I figure I'll just have them
move randomly along their X axis--since they'll still be shuffled it
will present the appearance of completely random movement.) Then I'd
like to have the child progress to a game where a series of blank icons
are displayed. Somehow or other one of the pictures will move--and the
child has to click on that picture. If the picture is stopped, one event
happens. If she catches it in motion, then something else happens. I'd
also like to have the child learn to compare different forms of the same
letter. A lower case "a" might match a capital "A". I'd use the
MouseMove event to draw a line behind the mouse to connect one form with
another. It would be, in effect, an electronic version of the matching
games that elementary workbooks use.

In Conclusion
If you've stayed with me to the end, I appreciate your patience. I've learned

a lot in the past few weeks with Visual Basic. It's a fascinating tool.
For many of us, it will be the difference between success and failure at
programming.

I have a very low threshold of "good enough." If I can't produce an
illustration or a program that does what I want pretty quickly, I'm
inclined to go do something else. I found that when I bought Corel Draw
my productivity went way up--I could achieve the drawing I wanted within
my "good enough" threshold, so all of a sudden I was producing
substantially better illustrations.

I've had the same experience with Visual Basic. I've fooled around with C.
I've thought about getting a more modern C compiler and buying a
book/disk package I saw advertised--a poor man's SDK. But I couldn't see
anything coming of it--my prior experiences with C (and Fortran, and
APL) proved to me that I didn't have the patience or the tenacity to
learn the language well enough to achieve much more than "Hello, World!"
As I reminded myself, if all I'm going to accomplish is "Hello, World!",
why do I need more than GW-BASIC?

Visual Basic isn't going to make me a full-time programmer. But it will let me
write fun little games like Ruthie!, it will let me participate
productively in projects like the VBCT effort, and it will let me
develop useful little programs that we'll use here at my company. I'm
__

17

Ruthie!
fascinated at what I can do with DDE links among VB applications, Excel,
and Word for Windows. It's so fascinating that I'm having trouble paying
attention to work these days.

Enough already. I hope you've enjoyed Ruthie. If you have any questions or
comments, please contact me on CompuServe at 71507,1212. If you have
suggestions for more (or better) games for Ruthie, please send them. I'd
love to do more with it.

Thanks for your time!

__
18

